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Abstract. We introduce the Densely Segmented Supermarket (D2S)
dataset, a novel benchmark for instance-aware semantic segmentation
in an industrial domain. It contains 21 000 high-resolution images with
pixel-wise labels of all object instances. The objects comprise groceries
and everyday products from 60 categories. The benchmark is designed
such that it resembles the real-world setting of an automatic checkout,
inventory, or warehouse system. The training images only contain objects
of a single class on a homogeneous background, while the validation and
test sets are much more complex and diverse. To further benchmark the
robustness of instance segmentation methods, the scenes are acquired
with different lightings, rotations, and backgrounds. We ensure that there
are no ambiguities in the labels and that every instance is labeled com-
prehensively. The annotations are pixel-precise and allow using crops of
single instances for articial data augmentation. The dataset covers sev-
eral challenges highly relevant in the field, such as a limited amount of
training data and a high diversity in the test and validation sets. The
evaluation of state-of-the-art object detection and instance segmentation
methods on D2S reveals significant room for improvement.

Keywords: instance segmentation, segmentation dataset, industrial ap-
plication

1 Introduction

The task of instance-aware semantic segmentation (instance segmentation for
short) can be interpreted as the combination of semantic segmentation and object
detection. While semantic segmentation methods predict a semantic category
for each pixel [20], object detection focuses on generating bounding boxes for
all object instances within an image [25]. As a combination of both, instance
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segmentation methods generate pixel-precise masks for all object instances in an
image. While solving this task was considered a distant dream a few years ago,
the recent advances in computer vision have made instance segmentation a key
focus of current research [20,8,16]. This is especially due to the progress in deep
convolutional networks [14] and the development of strong baseline frameworks
such as Faster R-CNN [25] and Fully Convolutional Networks (FCN) [20].

All top-performing methods in common instance segmentation challenges
are based on deep learning and require a large amount of annotated training
data. Accordingly, the availability of large-scale datasets, such as ADE20K [32],
Cityscapes [2], ImageNet [27], KITTI [5], COCO [19], Mapillary Vistas [23],
VOC [4], Places [31], The Plant Phenotyping Datasets [22], or Youtube-8M [1],
is of paramount importance.

Most of the above datasets focus on everyday photography or urban street
scenes, which makes them of limited use for many industrial applications. Fur-
thermore, the amount and diversity of labeled training data is usually much
lower in industrial settings. To train a visual warehouse system, for instance,
the user typically only has a handful of images of each product in a fixed set-
ting. Nevertheless, at runtime, the products need to be robustly detected in very
diverse settings. Only few datasets focus on industry-relevant challenges in the
context of warehouses. The Freiburg Groceries Dataset [12], SOIL-47 [13], and
the Supermarket Produce Dataset [26] contain images of supermarket products,
but only provide class annotations on image level, and hence no segmentation.
The Grocery Products Dataset [6] and GroZi-120 [21] include bounding box an-
notations that can be used for object detection. However, not all object instances
in the images are labeled separately. To the best of our knowledge, none of the
existing industrial datasets provides pixel-wise annotations on instance level.
In this paper, we introduce the Densely Segmented Supermarket (D2S) dataset,
which satisfies the industrial requirements described above. The training, valida-
tion, and test sets are explicitly designed to resemble the real-world applications
of automatic checkout, inventory, or warehouse systems.

Contributions. We present a novel instance segmentation dataset with high-
resolution images in a real-world, industrial setting. The annotations for the 60
different object categories were obtained in a meticulous labeling process and
are of very high quality. Specific care was taken to ensure that every occurring
instance is labeled comprehensively. We show that the high-quality region an-
notations of the training set can easily be used for artificial data augmentation.
Using both the original training data and the augmented data leads to a sig-
nificant improvement of the average precision (AP) on the test set by about
30 percentage points. In contrast to existing datasets, our setup and the choice
of the objects ensures that there is no ambiguity in the labels and an AP of
100% is achievable by an algorithm that performs flawlessly. To evaluate the
generalizability of methods, the training set is considerably smaller than the val-
idation and test sets and contains mainly images that show instances of a single
category on a homogeneous background. Overall, the dataset serves as a de-
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Fig. 1. The D2S image acquisition setup. Each scene was rotated ten times using a
turntable. For each rotation, three images under different illuminations were acquired

manding benchmark and resembles real-world applications and their challenges.
The dataset will be made publicly available1.

2 The Densely Segmented Supermarket Dataset

The overall target of the dataset is to realistically cover the real-world applica-
tions of an automatic checkout, inventory, or warehouse system. For example,
existing automatic checkout systems in supermarkets identify isolated products
that are conveyed on a belt through a scanning tunnel [11,3]. Even though such
systems often provide a semi-controlled environment, external influences (e.g.
lighting changes) cannot be completely avoided. Furthermore, the system’s effi-
ciency is higher if non-isolated products can be identified as well. Consequently,
methods should be able to segment also partly occluded objects. Also, the back-
ground behind the products is not constant in many applications because of
different types of storage racks in a warehouse system or because of dirt on the
conveyer belt of a checkout system in the supermarket, for example.

For the D2S dataset, we acquired a total of 21 000 images in 700 different
scenes with various backgrounds, clutter objects, and occlusion levels. In order
to obtain systematic test settings and to reduce the amount of manual work,
a part of the image acquisition process was automated. Therefore, each scene
was rotated ten times with a fixed angle step and acquired under three different
illuminations.

Setup. The setup used for the image acquisition is depicted in Fig. 1. A high-
resolution industrial color camera with 1920 × 1440 pixels was mounted above
a turntable. The camera was intentionally mounted off-centered with respect to
the rotation center of the turntable to introduce more variations in the rotated
images.

1 https://www.mvtec.com/research

https://www.mvtec.com/research
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Fig. 2. Each scene was acquired at ten different rotations in steps of 36◦. The camera
was mounted slightly off-centered in order to introduce more variation in the images

Objects. An overview of the 60 different classes is shown in Fig. 6. The object
categories cover a selection of common, everyday products such as fruits, vegeta-
bles, cereal packets, pasta, and bottles. They are embedded into a class hierarchy
tree. The branches of the tree split the classes into groups of different packag-
ing. This results in neighboring leafs being visually very similar, while distant
nodes are visually more different, even if they are semantically similar products,
e.g. single apples in comparison to a bundle of apples in a cardboard tray. The
class hierarchy can be used, for instance, for advanced training and evaluation
strategies similar to those used by YOLO9000 [24]. However, it is not used in
the scope of this paper.

Rotations. Each scene was rotated ten times in increments of 36◦. The turntable
allowed to automate this process and to ensure that the rotation angles are
precise. An example of the ten rotations for a scene from the training set is
displayed in Fig. 2.

Lighting. To evaluate the robustness of methods to illumination changes and
different amounts of reflection, each scene and rotation was acquired under three
different lighting settings. For this purpose an LED ring light was attached to the
camera. The illumination was set to span a large spectrum of possible lightings.
Hence, as displayed in Fig. 3 (top), the dark images were underexposed and the
bright images overexposed.

Background. The validation and test scenes have a variety of different back-
grounds that are shown in Fig. 3 (bottom). This allows to evaluate the general-
izability of approaches. In contrast, the training set is restricted to images with
a single homogeneous background. It is kept constant to imitate the settings
of a warehouse system, where new products are mostly imaged within a fixed
environment and not in the test scenario.

Occlusion and Clutter. As indicated in Fig. 4, occlusions in the dataset may arise
from objects of the same class, objects of a different class, or from clutter objects.
Clutter objects have a category that is not present in the training images. They
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Fig. 3. (Top) Each scene was acquired under three different lightings. (Bottom) As
opposed to the training set (where a single uniform background is used), the test
and validation sets include three additional backgrounds. This allows for a detailed
evaluation of the robustness of the methods

were added explicitly to the validation and test images to evaluate the robustness
of methods to novel objects. Examples of the selected clutter objects are shown
in Fig. 5.

Fig. 4. Objects appear with different
amounts of occlusion. These may either
be caused by objects of the same class,
objects of a different class or by clutter
objects not within the training set

Fig. 5. To test the robustness of ap-
proaches to unseen clutter objects, ob-
jects not within the training set were
added to the validation and test sets (e.g.,
a mouse pad and a black foam block)

3 Dataset Splitting

In contrast to existing datasets for instance-aware semantic segmentation, such
as VOC [4] and COCO [19], the D2S training set has a different distribution
with respect to image and class statistics than the validation and test sets. The
complexity of the captured scenes as well as the average number of objects per
image are substantially higher in the validation and test sets (see Table 1). The
motivation for this choice of split is to follow common industrial requirements,
such as: low labelling effort, low complexity of training set acquisition for easy
replicability, and the possibility to easily add new classes to the system.
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Fig. 6. Overview of the 60 different classes within the D2S dataset

The split is performed on a per-scene basis: all 30 images of a scene, i.e. all
combinations of the ten rotations and three lightings, are included in either the
training, the validation, or the test set. In the following, we describe the rules
for generating the splits.

Training Split. To meet the industrial requirements mentioned above, the train-
ing scenes are selected to be as simple as possible. Hence, the scenes have a
homogeneous background and mostly contain only one object. Furthermore, the
amount of occlusions is reduced to a minimum. To summarize, we add scenes to
the training split that

– contain only objects of one category2,
– provide new views of an object,
– only contain objects with no or marginal overlap,
– have no clutter and a homogeneous background.

The total number of scenes in the training set is 147, resulting in 4380 images of
6900 objects. The rather small training set should encourage work towards the
generation of augmented or synthetic training data, for instance using generative
adversarial networks [7,15,10,29,30].

Validation and Test Splits. The remaining scenes are split between the validation
and the test set. They consist of scenes with

2 In order to provide similar views of each object class as they are visible in the
validation and test set, four scenes were added to the training set that contain two
distinct classes.
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Table 1. Split statistics. Due to our splitting strategy, the number of images and the
number of instances per image is significantly lower for the training set. The complexity
of validation and test scenes is approximately the same

split all train val test

# scenes 700 146 120 434

# images 21000 4380 3600 13020

# objects 72447 6900 15654 49893

# objects/image 3.45 1.58 4.35 3.83

# scenes w. occlusion 393 10 84 299

# scenes w. clutter 86 0 18 68

rotations X X X

lighting variation X X X

background variation X X

clutter X X

– single or multiple objects of different classes,
– touching or occluded objects,
– clutter objects and
– varying background.

These scenes were chosen such that the generalization capabilities of approaches
can be evaluated. Additionally, current methods struggle with heavy occlusion
and novelty detection. These issues are addressed by this choice of splits as well.
The split between validation and test set was performed on subgroups of images
containing the same number of total and occluded objects. This ensures that
both sets have approximately the same distribution. The ratio of the number
of scenes in the validation and test set is chosen to be 1:4. The reasons for this
decision are twofold: First, the evaluation of the model on a small validation
set is faster. Second, we do not want to encourage training on the validation
set, but stimulate work on approaches that require little training data or use
augmentation techniques. The statistics of the number of images and objects in
the splits are visualized in Table 1.

4 Statistics & Comparison

In this section, we compare our dataset to VOC [4] and COCO [19]. These
datasets have encouraged many researchers to work on instance segmentation
and are frequently used to benchmark state-of-the-art methods.

Dataset Statistics. As summarized in Table 2, D2S contains significantly more
object instances than VOC, but fewer than COCO. Specifically, although the
D2S training set is larger than that of VOC, the number of training objects is



8 Follmann et al .

Table 2. Dataset statistics. Number of images and objects per split, average number
of objects per image and number of classes for D2S (ours), VOC 2012, and COCO.
*For VOC 2012 and COCO, the object numbers are only available for the training and
validation set

Dataset VOC COCO D2S

# images all 4369 163957 21000

train 1464 118287 4380

val 1449 5000 3600

test 1456 40670 13020

# objects all - - 72447

train 3507 849941 6900

val 3422 36335 15654

test - - 49893

# obj/img 2.38* 7.19* 3.45

# classes 20 80 60

less than 1% of those in COCO. This choice was made intentionally, as in many
industrial applications it is desired to use as few training images as possible.
In contrast, the proportion of validation images is significantly larger for D2S
in order to enable a thorough evaluation of the generalization capabilities. On
average, there are half as many objects per image in D2S as in COCO.

Class Statistics. Since the images of COCO and VOC were taken from flickr3,
the distribution of object classes is not uniform. In both datasets, the class
person dominates, as visualized in Fig. 7: 31% and 25% of all objects belong to
this class for COCO and VOC, respectively. Moreover, 10% of the classes with

3 https://www.flickr.com

Fig. 7. Ratio of objects per class for D2S (orange), VOC (green) and COCO (violet). In
COCO and VOC, the class person is dominant and some classes are underrepresented.
In D2S, the number of objects per class is uniformly distributed. Note that for COCO
and VOC the diagram was calculated based on train and val splits

https://www.flickr.com
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Fig. 8. Number of images per class and split sorted by the total number of images per
class for D2S. The number of images per class is almost uniformly distributed

the highest number of objects are represented by 51% and 33% of all objects,
while only 5.4% and 13.5% of the objects belong to the 25% of classes with the
lowest number of objects. This class imbalance is valid since both COCO and
VOC represent the real world where some classes naturally appear more often
than others. In the evaluation all classes are weighted uniformly. Therefore, the
class imbalance inherently poses a challenge to learn all classes equally well,
independent from the number of training samples. For example, the COCO 2017
validation set contains nine instances of the class toaster, but 10 777 instances
of person. Nevertheless, both categories are equally weighted in the calculation
of the mean average precision, which is the metric used for ranking the methods
in the COCO segmentation challenge.

There is no such class imbalance in D2S. In the controlled environment of
the supermarket scenario, all classes have the same probability to appear in an
image. The class with the highest number of objects is represented by only 2.7%
of all objects. Only 14% of the objects represent the 10% of classes with the
highest number of objects, while 19% of the objects are from the 25% of classes
with the lowest number of objects. The class distribution of D2S is visualized
in Fig. 8, where the number of images per class is shown in total and for each
split. As mentioned in the previous section, the number of images for each class
is rather low in the training split. This is especially the case for classes that have
a similar appearance for different views, such as kiwi and orange single. Note
that, although the split choice between validation and test set is not made on
the class level, each class is well represented in both sets. The key challenge of
the D2S dataset is thus not the handling of underrepresented classes, but the
low amount of training data.

Label Consistency. It is difficult to ensure that all object instances in large real-
world datasets are labeled consistently. On the one hand, it is hard to establish a
reliable review process for the labeling of large datasets, e.g. to avoid unlabeled
objects. On the other hand, some labels are ambiguous by nature, for instance
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Fig. 9. Large real-world datasets are extremely difficult to label consistently. In the
examples from ADE20K, VOC and COCO, some labels are missing (from left to right):
a window, the sofa, some donuts, and the painting of a person

a painting of a person. Fig. 9 shows examples for label inconsistencies from
ADE20K [32], VOC and COCO.

In D2S, the object classes are unambiguous and have been labeled by six
expert annotators. We ensured that all present objects are annotated with high
quality labels. A perfect algorithm, which flawlessly detects and segments ev-
ery object in all images of the D2S dataset, will achieve an AP of 100%. This
is not the case for COCO, VOC, and ADE20K. In these datasets, if an algo-
rithm correctly detects one of the objects that is not labeled, the missing ground
truth leads to a false positive. Furthermore, if such an object is not found by
an algorithm, the resulting false negative is not accounted for. As algorithms
improve, this might prevent better algorithms from obtaining higher scores in
the benchmarks. It should be noted that in COCO, this problem is addressed
using crowd annotations, i.e. regions containing many objects of the same class
that are ignored in the evaluation. However, crowd annotations are not present
in all cases.

5 Benchmark

In this section, we provide first benchmark results for our dataset. We evaluate
the performance of state-of-the-art methods for object detection [25,18] and
instance segmentation [8,16]. We experiment with various training sets, which
differ in the number of rotations and the availability of under- and overexposed
images. Furthermore, we evaluate a simple approach for augmenting the training
data artificially.

5.1 Evaluated Methods

Object Detection. For the object detection task, we evaluate the performance of
Faster R-CNN [25] and RetinaNet [18]. We use the official implementations of
both methods, which are provided in the Detectron4 framework. Both methods
use a ResNet-101 [9] backbone with Feature Pyramid Network [17].

Instance Segmentation. For the instance segmentation task, we evaluate the per-
formance of Mask R-CNN [8] and FCIS [16]. We use the official implementation
of Mask R-CNN in the Detectron framework and the official implementation of

4 https://github.com/facebookresearch/Detectron

https://github.com/facebookresearch/Detectron
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FCIS provided by the authors5. Mask R-CNN uses a ResNet-101 with Feature
Pyramid Network as backbone, while FCIS uses a plain ResNet-101. Since both
methods output boxes in addition to the segmentation masks, we also include
them in the object detection evaluation.

Training. All methods are trained end-to-end. The network weights are initial-
ized with the COCO-pretrained models provided by the respective authors. The
input images are resized to have a shorter side of 800 pixels (600 pixels for FCIS,
respectively). All methods use horizonal flipping of the images at training time.
FCIS uses online hard example mining [28] during training.

5.2 Evaluation Metric

The standard metric used for object detection and instance segmentation is
mean average precision (mAP) [4]. It is used, for instance, for the ranking of
state-of-the-art methods in the COCO segmentation challenge [19]. We com-
pute the mAP exactly as in the official COCO evaluation tool6 and give its
value in percentage points. The basic average precision (AP) is the area under
the precision-recall curve, computed for a specific intersection over union (IoU)
threshold. In order to reward algorithms with better localization, the AP is usu-
ally averaged over multiple IoU thresholds, typically the interval [0.5, 0.95] in
steps of 0.05. The mAP is the mean over APs of all classes in the dataset. In
the following, we just use the abbreviation AP for the value averaged over IoUs
and classes. When referring to class-averaged AP for a specific IoU threshold,
e.g. 0.5, we write AP50.

5.3 Data Augmentation

In order to keep the labeling effort low and still achieve good results, it is crucial
to artificially augment the existing training set such that it can be used to train
deep neural networks. Hence, we experiment with a simple data augmentation
technique, which serves as baseline for more sophisticated approaches. In par-
ticular, we simulate the distribution of validation and test set using only the
annotations of the training set. For this purpose, we assemble 10 000 new artifi-
cial images that contain one to fifteen objects randomly picked from the training
split. We denote the augmented data as aug in Table 3. For each generated im-
age, we randomly sample the lighting and number of object instances. For each
instance, we randomly sample its class, the orientation, and the location in the
image. The background of these images is the plain turntable. We make sure
that the instances’ region centers lie on the turntable and that occluded objects
have a visible area larger than 5000 pixels. Fig. 10 shows example images of the
artificially augmented dataset for all three different lightings. Due to the high-
quality annotations without margins around the object border, the artificially

5 https://github.com/msracver/FCIS
6 https://github.com/cocodataset/cocoapi

https://github.com/msracver/FCIS
https://github.com/cocodataset/cocoapi
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assembled images have an appearance that is very similar to the original test
and validation images.

Fig. 10. The artificial augmented training set is generated by randomly assembling
objects from the basic training set

5.4 Results

When trained on the full training set train and evaluated on the test set,
the instance segmentation methods provide solid baseline APs of 49.5% (Mask
R-CNN) and 45.6% (FCIS). The object detection results are on a similar level,
with APs of 46.5% (Mask R-CNN), 44.0% (FCIS), 46.1% (Faster R-CNN), and
51.0% (RetinaNet). Tables 3 and 4 show the results in full detail.

Ablation Study. As aforementioned, the D2S splits are based on scenes, i.e. all
rotations and lightings for one placement of objects are included in the same
split. In order to evaluate the importance of these variations and the ability of
the instance segmentation methods to learn invariance with respect to rotations
and illumination, we perform an ablation study. For this purpose, we create
three subsets of the full training set train. The train rot0 set contains all
three lightings, but only the first rotation of each scene. The train light0

set contains only the default lighting, but all ten rotations of each scene. The
train rot0 light0 set contains only the default lighting and the first rotation
for each scene.

The resulting AP values of the instance segmentation methods Mask R-CNN
and FCIS are summarized in Table 3 (top). As expected, we obtain the best
results when training on the full train set. Training only on the first rotation
reduced the AP on the test set by 15.7% and 9.1% for Mask R-CNN and FCIS,
respectively. Training only with default lighting reduced the AP slightly by 3.4%
for Mask R-CNN and increased the AP by a neglible 0.4% for FCIS. Training on
train rot0 light0 reduced the AP by 13.2% and 12.9%, respectively. Overall,
the results indicate that the models are more invariant to changes in lighting
than to rotations of the objects.

Data Augmentation. As shown in Table 3, training on the augmented dataset
aug boosts the AP on the test set to 76.1% and 69.8% for Mask R-CNN and
FCIS, respectively. This is significantly higher than the 49.5% and 45.6% achieved
by training on the original train set. Combining the sets train and aug to
train+aug further improves the AP by 8.3% and 2.7%, respectively.
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Table 3. Instance segmentation benchmark results on the test set. Mean
average precision values for models trained on different training sets. (Top) Training
on different subsets of the train set. (Bottom) Training on augmented data yields the
highest AP values

Mask R-CNN FCIS

AP AP50 AP75 AP AP50 AP75

train 49.5 57.6 51.3 45.6 58.3 51.3

train rot0 33.8 41.6 35.6 36.5 47.5 41.8

train light0 46.1 54.8 48.0 46.0 59.3 52.0

train rot0 light0 36.3 45.1 38.6 32.7 43.4 38.1

aug 71.6 86.9 81.7 69.8 87.6 82.4

train+aug 79.9 89.1 85.3 72.5 88.1 83.5

Table 4. Object detection benchmark results on the test set. Mean average
precision values for models trained on different training sets

Mask R-CNN FCIS Faster R-CNN RetinaNet

AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

train 46.5 58.3 53.5 44.0 59.4 51.7 46.1 55.2 49.7 51.0 61.0 52.8

train rot0 34.1 42.5 38.3 34.6 48.2 41.3 36.7 46.9 41.5 32.9 39.8 34.5

train light0 45.5 55.7 49.5 44.0 60.3 51.9 43.7 53.9 47.8 51.7 62.0 53.6

train rot0 light0 35.7 46.0 40.5 29.9 43.9 35.4 34.3 44.3 39.0 31.6 38.9 33.2

aug 72.9 87.9 82.0 69.9 88.1 80.7 73.5 88.4 82.2 74.2 86.9 81.4

train+aug 78.3 89.8 84.9 68.3 88.5 80.9 78.0 90.3 84.8 80.1 89.6 84.5

Object Detection. We conduct the same ablation study for the task of object
detection. The resulting AP values for all training splits of the methods Faster
R-CNN and RetinaNet, as well as the results of instance segmentation methods
Mask R-CNN and FCIS evaluated on bounding box level, are summarized in
Table 4. It is interesting to note, that these AP values are not always better than
the AP values obtained for the more difficult task of instance segmentation. For
all methods the overall performance is very similar. Reducing the training set
to only one rotation or only one lighting per scene results in worse performance.
Analogously, augmenting the dataset by generating artificial training images
results in a strong improvement.

Qualitative results. We show qualitative results of the best-performing method
Mask R-CNN in Fig. 11. Furthermore, Fig. 12 shows typical failure cases we
observed for Mask R-CNN and FCIS on the D2S dataset. More qualitative
results are provided in the supplementary material.
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Fig. 11. (Top) Ground truth annotations from the D2S val and test sets. (Bottom)
Results of Mask R-CNN trained on the train set. The classes are indicated by different
colors

Fig. 12. Typical failure cases of of Mask R-CNN and FCIS on D2S. (From left to right)
(1 ) Nearby objects are detected as a single instance. (2 ) Segmentation mask spans to
neighboring objects. (3 and 4 ) Background is falsely detected as object

6 Conclusion

We have introduced D2S, a novel dataset for instance-aware semantic segmen-
tation that focuses on real-world industrial applications. The dataset addresses
several challenges highly relevant in the field, such as dealing with very limited
training data. The training set is intentionally small and simple, while the vali-
dation and test sets are much more complex and diverse. As opposed to existing
datasets, D2S has a very uniform distribution of the samples per class. Further-
more, the fixed acquisition setup prevents ambiguities in the labels, which in turn
allows flawless algorithms to achieve an AP of 100%. We further showed how the
high-quality annotations can easily be utilized for artificial data augmentation
to significantly boost the performance of the evaluated instance segmentation
methods from an AP of 49.5% and 45.6% to 79.9% and 72.5%, respectively.
Overall, the benchmark results indicate a significant room for improvement of
the current state-of-the-art. We believe the dataset will help to boost research
on instance-aware segmentation and leverage new approaches for artificial data
augmentation.
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Appendix

We provide the following supplementary material:

– Qualitative results of the instance segmentation models
– Per-class results
– The class tree
– A video showing the quality of annotations and the variation of the dataset7

A Qualitative Results

Figures 13 and 14 show qualitative instance segmentation results of FCIS and
Mask R-CNN, respectively. The models have been trained on different splits of
the D2S dataset. Note that the model trained on train+aug performs signifi-
cantly better than the model trained only on train, especially for objects with
occlusion. All models struggle with textured background and reflections.

B Per-Class Results

Tables 5 and 6 show the per-class AP values for FCIS and Mask R-CNN,
respectively, for all 60 classes and all training splits. In general, the highest
APs are achieved for classes with large objects and no reflections, such as
lettuce, salad iceberg or oranges. The data augmentation boosts particularly
the worst-performing classes, such as banana single, cucumber, zucchini and all
gepa bio und fair ∗-classes.

C Data Augmentation

The aug split consists of 10 000 artificially generated images. In order to eval-
uate the influence of the number of training images, we used subsets of 2 000,
4 000, 6 000, and 8 000 images of aug, respectively, to train FCIS pretrained on
ImageNet. The resulting AP values for both validation and test set are shown
in Fig. 15. It can be seen that using more images results in better performance.
However, already with 2 000 generated images the AP increases by over 20 per-
centage points compared to using train.

D Class Tree

The class tree assigns superclasses to classes according to their appearance or
packaging in a hierarchical manner. It is visualized in Fig. 16.

7 https://www.mvtec.com/research

https://www.mvtec.com/research
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ground truth rot0 light0 rot0 light0 train aug train+aug

Fig. 13. FCIS qualitative results. A collection of exemplary results of FCIS trained
on different splits. Note that complex backgrounds often lead to false detections. The
object classes are color-coded
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ground truth rot0 light0 rot0 light0 train aug train+aug

Fig. 14. Mask R-CNN qualitative results. A collection of exemplary results of
Mask R-CNN trained on different splits. Note that complex backgrounds often lead to
false detections. The object classes are color-coded
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Table 5. FCIS AP values per class. The AP values of the FCIS models trained on
different training sets are calculated on the test set. The mean AP is calculated over
all 60 classes. The highest class AP values are highlighted in bold.

class train rot0 light0 rot0 light0 aug train+aug

adelholzener alpenquelle classic 075 40.1 23.9 28.1 17.4 42.9 51.8
adelholzener alpenquelle naturell 075 46.7 27.9 36.7 23.8 68.0 69.1
adelholzener classic bio apfelschorle 02 49.6 24.0 47.9 8.0 64.8 73.7
adelholzener classic naturell 02 47.6 18.9 49.3 10.1 62.6 71.1
adelholzener gourmet mineralwasser 02 54.0 22.4 55.3 15.6 71.8 78.8
augustiner lagerbraeu hell 05 49.9 26.2 47.0 17.1 52.8 60.2
augustiner weissbier 05 21.4 17.1 20.0 7.2 33.6 50.5
coca cola 05 45.1 24.5 42.6 18.2 56.8 57.0
coca cola light 05 43.6 11.4 34.2 8.1 55.0 60.8
suntory gokuri limonade 52.8 49.6 54.6 44.6 62.1 72.1
tegernseer hell 03 36.9 8.8 37.2 7.7 42.3 64.8
corny nussvoll 51.6 53.6 55.8 43.1 89.9 91.6
corny nussvoll single 59.0 22.9 59.6 16.5 68.0 72.0
corny schoko banane 44.1 21.4 40.4 17.3 83.2 85.1
corny schoko banane single 17.4 13.7 23.1 11.0 54.0 54.6
dr oetker vitalis knuspermuesli klassisch 46.3 21.7 27.5 16.8 80.0 83.1
koelln muesli fruechte 47.0 29.7 38.5 24.6 82.2 85.5
koelln muesli schoko 46.2 11.0 30.1 12.1 76.8 80.1
caona kakaohaltiges getraenkepulver 57.6 63.3 62.4 67.9 85.0 85.0
cocoba fruehstueckskakao mit honig 41.6 37.6 44.7 39.9 72.3 75.4
cafe wunderbar espresso 45.5 43.6 53.1 34.5 82.3 74.0
douwe egberts professional kaffee gemahlen 41.7 37.3 40.6 30.8 71.8 68.7
gepa bio caffe crema 40.7 36.3 43.5 38.6 62.4 64.8
gepa italienischer bio espresso 52.4 32.9 49.9 36.5 59.6 66.7
apple braeburn bundle 58.9 68.2 66.0 67.9 84.7 88.9
apple golden delicious 53.6 43.6 57.3 40.8 80.5 85.8
apple granny smith 58.4 54.8 64.0 52.9 78.8 82.6
apple roter boskoop 63.4 67.3 65.9 51.0 82.1 86.2
avocado 55.6 56.4 54.9 52.5 83.4 84.4
banana bundle 62.9 66.0 73.1 62.3 79.0 80.8
banana single 23.9 19.8 26.3 16.3 51.6 51.4
clementine 50.8 59.9 58.9 66.2 80.3 81.6
clementine single 48.2 50.1 48.6 40.8 68.8 72.8
grapes green sugraone seedless 52.8 61.7 57.4 59.5 76.8 78.3
grapes sweet celebration seedless 55.7 55.5 63.3 58.4 76.8 80.2
kiwi 31.8 27.6 31.5 24.1 72.0 75.4
orange single 58.1 71.2 61.4 69.4 76.7 82.8
oranges 62.5 65.8 65.0 66.5 80.8 83.5
pear 60.2 45.2 59.3 27.7 75.7 77.9
pasta reggia elicoidali 49.0 31.1 53.9 29.5 88.4 86.7
pasta reggia fusilli 49.4 30.6 54.4 30.9 77.5 53.2
pasta reggia spaghetti 47.3 36.0 47.5 32.8 82.3 83.4
franken tafelreiniger 47.3 37.3 40.7 22.1 48.3 62.7
pelikan tintenpatrone canon 22.3 18.5 22.4 9.2 66.5 65.6
ethiquable gruener tee ceylon 53.1 44.7 54.0 34.3 70.5 80.2
gepa bio und fair fencheltee 14.9 9.4 13.8 5.3 55.7 57.6
gepa bio und fair kamillentee 26.5 21.4 27.4 13.3 64.1 50.3
gepa bio und fair kraeuterteemischung 29.2 15.3 19.8 13.2 67.4 61.5
gepa bio und fair pfefferminztee 36.5 18.2 22.4 11.6 68.8 64.9
gepa bio und fair rooibostee 44.0 28.3 44.5 21.4 70.0 75.8
kilimanjaro tea earl grey 40.6 28.7 41.5 26.6 63.7 70.6
cucumber 27.6 18.1 29.3 13.6 60.6 58.6
carrot 36.1 40.7 37.1 36.9 54.6 53.4
feldsalat 47.1 37.6 50.3 42.6 78.9 79.7
lettuce 67.3 79.5 70.6 81.1 91.7 92.2
rispentomaten 39.0 45.3 49.4 51.7 71.4 70.9
roma rispentomaten 41.1 35.3 46.1 27.9 66.7 68.4
rucola 45.4 28.8 52.3 40.3 68.7 70.9
salad iceberg 53.9 63.7 61.7 69.5 81.4 83.5
zucchini 44.1 29.2 44.6 24.3 64.4 71.3
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Table 6. Mask R-CNN AP values per class. The AP values of the Mask R-CNN
models trained on different training sets are calculated on the test set. The mean AP
is calculated over all 60 classes. The highest class AP values are highlighted in bold.

class train rot0 light0 rot0 light0 aug train+aug

adelholzener alpenquelle classic 075 40.6 16.4 28.2 9.4 43.1 44.8
adelholzener alpenquelle naturell 075 53.8 23.8 37.1 23.1 72.1 76.3
adelholzener classic bio apfelschorle 02 57.7 12.1 56.7 4.7 65.8 75.9
adelholzener classic naturell 02 48.5 11.3 59.3 36.3 68.4 79.0
adelholzener gourmet mineralwasser 02 69.9 36.9 61.4 45.7 76.2 86.8
augustiner lagerbraeu hell 05 48.6 17.1 57.0 17.9 49.8 70.1
augustiner weissbier 05 15.6 12.7 21.9 13.0 41.2 50.5
coca cola 05 45.8 23.7 48.8 16.4 53.2 61.2
coca cola light 05 38.9 16.7 35.1 9.1 55.3 70.8
suntory gokuri limonade 67.1 51.6 67.2 54.0 59.4 83.0
tegernseer hell 03 44.8 11.7 38.5 6.0 47.7 67.8
corny nussvoll 53.6 45.1 49.2 55.3 93.0 96.6
corny nussvoll single 70.9 40.8 64.2 32.9 77.6 84.2
corny schoko banane 45.2 12.5 37.9 29.8 84.1 90.1
corny schoko banane single 23.6 14.1 24.0 19.2 59.7 64.0
dr oetker vitalis knuspermuesli klassisch 48.9 28.7 24.8 24.6 83.4 91.0
koelln muesli fruechte 51.1 24.3 53.8 26.7 88.8 93.3
koelln muesli schoko 57.8 4.4 38.6 8.1 85.3 90.2
caona kakaohaltiges getraenkepulver 56.9 45.3 44.9 56.0 82.0 88.0
cocoba fruehstueckskakao mit honig 51.0 43.0 44.9 36.4 76.1 86.7
cafe wunderbar espresso 39.3 12.8 44.5 37.1 83.0 88.2
douwe egberts professional kaffee gemahlen 45.8 38.2 42.2 38.7 71.5 75.1
gepa bio caffe crema 40.4 31.5 41.5 41.9 81.9 82.1
gepa italienischer bio espresso 59.3 30.9 52.5 19.6 61.9 65.5
apple braeburn bundle 59.8 56.8 60.7 66.2 82.3 91.7
apple golden delicious 78.2 72.8 66.4 73.0 76.1 91.3
apple granny smith 72.5 71.4 65.9 66.4 75.5 87.4
apple roter boskoop 79.4 71.2 76.6 79.8 78.1 94.1
avocado 73.0 60.6 76.2 74.2 84.2 93.4
banana bundle 51.4 47.5 55.8 46.9 76.8 86.6
banana single 27.4 18.0 28.6 20.6 55.9 57.9
clementine 54.6 57.5 58.4 59.8 79.7 83.0
clementine single 59.5 65.0 60.4 59.9 81.2 89.7
grapes green sugraone seedless 44.0 29.4 27.8 34.2 68.9 77.2
grapes sweet celebration seedless 61.5 54.9 51.4 46.8 75.7 80.7
kiwi 45.5 60.0 55.6 54.0 68.9 88.7
orange single 69.6 70.5 66.5 72.7 81.5 91.2
oranges 61.1 51.1 61.2 65.8 81.3 86.3
pear 56.4 40.7 74.8 70.5 76.5 85.1
pasta reggia elicoidali 43.1 23.3 48.2 38.8 88.5 90.5
pasta reggia fusilli 48.8 23.7 51.6 38.4 76.7 76.5
pasta reggia spaghetti 55.4 28.3 45.0 28.5 85.0 90.5
franken tafelreiniger 48.2 33.4 39.8 34.1 52.8 67.7
pelikan tintenpatrone canon 30.5 25.6 27.2 32.1 69.1 75.8
ethiquable gruener tee ceylon 52.3 35.9 48.1 18.6 77.8 86.4
gepa bio und fair fencheltee 19.3 5.0 14.7 10.9 50.2 55.9
gepa bio und fair kamillentee 32.7 17.9 23.3 18.4 64.4 71.1
gepa bio und fair kraeuterteemischung 27.0 10.1 17.8 9.4 58.1 72.6
gepa bio und fair pfefferminztee 37.5 5.2 24.5 7.9 69.3 77.2
gepa bio und fair rooibostee 47.3 29.1 45.0 21.9 70.4 77.3
kilimanjaro tea earl grey 46.1 31.6 38.4 25.4 64.1 75.6
cucumber 29.9 23.9 33.0 27.6 71.4 77.6
carrot 54.1 44.5 42.8 44.5 62.7 72.1
feldsalat 49.5 33.2 40.5 34.8 77.4 84.0
lettuce 51.6 55.0 34.7 38.4 93.4 96.2
rispentomaten 45.0 39.4 45.2 52.3 71.9 78.0
roma rispentomaten 38.8 33.7 37.5 40.2 71.6 73.7
rucola 38.9 15.8 41.0 12.8 71.7 76.1
salad iceberg 55.7 53.4 52.9 66.8 77.9 86.4
zucchini 49.4 23.9 51.0 24.8 68.7 84.0
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Fig. 15. Data augmentation. Influence of number of artificially generated training
images on AP for validation and test set

Fig. 16. Class Tree. Objects are sorted based mainly on their appearance and pack-
aging rather than on their content. For example, different kinds of coffee are close to
each other since they all have a textured, soft plastic packaging. But they are far from
all sorts of tea, which is packaged in cardboard.
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